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Outline

• Motivation
• Materials
• Activation and Monitoring of Lunar Dust and 

Analogs
– Fluorescence
– EPR

• Solubility Studies
– ICP-MS

• Cellular Toxicity
– A549
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Words of Wisdom

“I think dust is probably 
one of our greatest 
inhibitors to a nominal 
operation on the Moon.  I 
think we can overcome other 
physiological or physical or 
mechanical problems except 
dust.”

Gene Cernan
Apollo 17 Technical Debrief
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Pathway of Dust Introduction

John Lindsey, LPI
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Lunar EVA Suits

Jack Schmitt
(Apollo 17)
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Problems Caused by Dust
• Obscured vision

– Apollo 15: vision completely obscured below 60 ft when landing
• Clogged equipment

– Apollo 12: wrist and suit hose locks clogged with dust
• Coated surfaces

– Apollo 11: T.V. cable caused tripping after dust covering
• Inhalation

– Apollo 15: gunpowder smell
– Apollo 17: “hay fever” symptoms

• Degraded radiators
– Apollo 16: degraded instrument performance from overheating

• Fooled instruments
• Caused seal failure

– Apollo 14: measurable leaking of suits
• Abraded surfaces

– Apollo 16: gauge dials unreadable from scratching
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What is lunar dust?

• Lunar soil is defined as the loose fragmental 
material with a grain size smaller than 1 cm on 
and near the surface of the moon.  It is a subset 
of the lunar regolith which includes all size 
fragments including boulders.

• Lunar dust is the finest size fraction of lunar soil.  
A working definition of lunar dust is that it is all 
grains smaller than 20 µm.
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Lunar Dust

• Contains Si-containing minerals, various oxides, and trace metals
• Magnetic
• Particles are oddly shaped, with jagged edges, and do not pack 

together well
Sarah Noble, MSFC
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Lunar Dust Rims

50nm

100nm

Glassy rims produced by vapor/sputter deposition.  Also contain ~ 10 nm 
Fe nanoparticles

Sarah Noble, MSFC
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Lunar Soil Formation

Larry Taylor, U. Tennessee

Lunar soil is formed by a combination of comminution (breaking down), 
agglutination (clumping together), and vapor deposition.
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Meteorite Impact on the Moon

• 25 cm diameter meteorite traveling at 85,000 mph
• Kinetic energy of impact: 17 billion joules (equivalent to 4 tons of TNT)
• New crater: 14 meters wide by 3 meters deep
• Flash only 0.4 seconds in real-time
http://science.nasa.gov/headlines/y2006/13jun_lunarsporadic.htm
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Recent Impacts
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Lunar Dust Simulant (JSC-1A-vf)

• Made from volcanic ash
• 50% SiO2
• 42-45% other oxides (Al2O3, FeO, MgO, CaO)

– Materials not pure oxides (mineral form)
• No trace metals
• Size distribution of particles similar to samples 

of lunar dust
• 90% smaller than 13 µm diameter

– 50% < 3 µm

Only 842 lbs of material returned from the moon!
Simulant material needed for preliminary studies.
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Lunar Dust Activation

• Constant activation of lunar dust by meteorites, 
UV radiation, and elements of solar wind

• No passivating atmosphere
• Active dust could produce reactive species in the 

lungs
– Freshly fractured quartz

• Must determine methods of deactivation before 
new lunar missions

• First, must understand how to reactivate dust on 
Earth



16

What Does “Activated” Mean?

• Presence of reactive sites on surface
– Free radicals

• Ability to produce reactive species in 
solution

J. Narayanasamy and J.D. Kubicki, J. Phys. Chem. B 109 (2005) 21796-21807
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Previous Studies of Quartz Activation
• Grinding quartz gives electron spin 

resonance (ESR) signal characteristic of Si· or 

Si-O· radicals

• Increased grinding time produces higher 

signal

• Decrease in Si-based radicals over time in air

• Half-life of ~30 hours, with 20% of signal 

detectable even after 4 weeks

V. Castranova, Environ. Health Perspect. 102 (1994) 65-68.
V. Vallyathan et al., Am. Rev. Respir. Dis. 138 (1998) 1213-1219

• Ground quartz in aqueous solution produces 

OH radicals

• Radical production decreases with exposure 

to air

• Half life of ~ 20 hours
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Activation Methods Tested

• Crushing/Grinding
• Mortar and pestle
• Ball Mill

• UV activation

• Heating
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Fluorescence
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Hydroxyterephthalate as a Probe of 
Hydroxyl Radical Generation

Terephthalate
(non-flurorescent)

2-Hydroxyterephthalate
(fluorescent)

COO-

COO-

COO-

COO-

OH
HO
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• 10 minute grinding 
• 3.8 mg/mL JSC-1A-vf
• 10 mM Terephthalate
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Size Distribution after Grinding
Size distribution of lunar dust particles (62241-

Ground)

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

0.01 0.1 1 10 100
Particle diameter (m)

 N
 / 

Lo
g(

Dp
) 

A

B

A: Min-U-Sil 15- 8.436 m2/g
B: JSC-1A-vf- 5.369 m2/g
C: 62241 (Apollo 16)- 8.404 m2/g

C



23

Effect of Grinding Time

• Grinding time has a direct 

effect on amount of hydroxyl 

radicals produced upon addition 

of ground quartz to solution

• Grinding also shown to 

produce higher number of 

silicon-based radicals in ESR 

spectra

• Increase in hydroxyl 

production also seen for lunar 

simulant with increased grinding

N.S. Dalal, X. Shi, and V. Vallyathan, Free Rad. Res. Comms. 9 (1990) 259-266.
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Activation by UV Exposure 
and Heating
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UV Activation of Unground Lunar 
Simulant 

• 3.8 mg/mL JSC-1A-vf
• 10 mM Terephthalate
• 800 W UV (initial setting)
• ~ 5 X 10-4 Torr

Exposure of unground 
simulant to UV 
radiation under 

vacuum leads to the 
production of hydroxyl 

radicals by the 
simulant when placed 
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UV Reactivation of Ground, 
Deactivated Lunar Dust and Simulant

0 50 100 150 200
0

500

1000

1500

2000

2500

3000

3500

4000
 4h deactivation (JSC-1A-vf)- 3.8 mg/mL
 96h deactivation (JSC-1A-vf)- 3.8 mg/mL
 20h deactivation (JSC-1A-vf)- 3.8 mg/mL
 24h deactivation (JSC-1A-vf)- 3.8 mg/mL
 Apollo 16 (62241) - 1.2 mg/mL

P
ea

k 
A

re
a

(3
75

 n
m

-5
50

 n
m

)

UV Exposure Time (min)

Final deactivation 
point from initial 
lunar dust testing 
(> 1 month further 
deactivation; upper 
limit for activity)

Deactivated (50% 
RH, 25 oC) lunar 
simulant and lunar 
dust can be 
reactivated by 
exposure to UV 
radiation under 
vacuum.



27

0 5 10 15 20 25

1000

1200

1400

1600

1800

2000

2200
 Min-U-Sil 5
 Min-U-Sil 30
 JSC-1A-vf
 JSC-1A-F

R
el

at
iv

e 
*O

H
 P

ro
du

ct
io

n 
(a

.u
.)

Time (hours)

Effect of Heating Dust

• 150 oC in vacuum 
oven
• Six hour heating 
at 175 oC shows 
some changes; 
further studies 
underway
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EPR
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• Broad peaks: no determination 
of silicon- or oxygen-based 
radicals
• Change in g-values from 2.11 
(unground) to 2.09 (ground)
• Similar downward shifts and g-
values seen previously by 
Haneman and Miller*

*: D. Haneman and D.J. Miller, Proc. Second Lunar Sci. Conf. 3 (1971) 2529-2541.

EPR Spectra of Apollo 62241
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C N O +   ·X N O·C

XCH3

CH3

CH3

CH3

H3C H3C

MNP Spin-adduct Reaction
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* : spin-adduct triplet

30 minute grinding

10 minute grinding

10 minute grinding

100 mM MNP/acetonitrile

Spin-trapping of Radicals

• Level of activity increases in the order: quartz < lunar dust simulant < lunar dust
• Peak-to-peak splitting corresponds to radical containing no hydrogen

• Activated species likely interacting with acetonitrile to produce radicals
• Future testing to include hydroxyl radical trap in water
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Deactivation
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Deactivation of Freshly Ground Lunar 
Simulant (JSC-1A-vf)

• Activity of freshly 
ground simulant can be 
reduced by exposure to 
humid environment.

• Multiple sets of 
deactivation 
experiments show 
simulant half life to be ~ 
3 hours with activity 
approaching unground 
levels at ~ 24 hours.
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Deactivation of Freshly Ground Quartz
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Effects of Vacuum on UV 
Activation/Deactivation of Lunar Simulant
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• 3.8 mg/mL
• 10 mM 
Terephthalate
• 800 W UV       
(initial setting)

• Error bars for 
deactivated and 
ground simulant 
account for activities 
prior to and at 
conclusion of UV 
exposure.

Exposure of active 
simulant to UV in air 

leads to 
deactivation!
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Solubility
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• Place 10 mg JSC-1A-vf in 20 mL of 
buffer solution in 50 mL centrifuge tube

• Rotate tubes for 72 hours under ambient 
conditions (23-25 oC, 30-50% RH)

• Flush syringes and 0.2 µm syringe filters 
with distilled water

• Filter solutions 
• Measure concentrations using ICP-MS

Technique
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pH Effects of Simulant
Changes in pH with Time

7

7.5

8

8.5

9

9.5

10

0 100 200 300 400

Time after addition of water (hrs)

pH

100 mg sample
200 mg sample
500 mg sample



39

Leaching Effects of pH
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• Buffer solutions 
were prepared at pH 
of 4.0, 4.26, 5.3, 6.7, 
and 7.4

• 10 mg of unground 
or ground JSC-1A-vf 
were added to 20 mL 
of each buffer 
solution in 50 mL 
centrifuge tubes (0.5 
mg/mL)

•Rotated slowly for 72 
hours
• Filtered solutions 
were tested using 
ICP-MS

– Si, Al, Fe, Ti, Ni, 
Cu, Zn, Ca, Mg, K, 
Na

• Ni, Cu, Zn, and Na 
not significantly 
above controls

• Future testing to 
include lunar dust 
and lung fluid 
simulants
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Cell Culture
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Direct toxicity of Quartz

V. Castranova, Environ. Health Perspect. 102 (1994) 65-68. 
N.S. Dalal, X. Shi, and V. Vallyathan, Free Rad. Res. Comms. 9 (1990) 259-266.

• Grinding of quartz also leads to direct toxicity in 

vitro

• Ability of ground silica to oxidize lipids is directly 

correlated to the number of radicals produced in 

solution and “freshness” of silica
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Techniques
• A549 alveolar epithelial cells grown 72 hours 
• Treatment media prepared by adding10 mg of sample to 
10 mL F-12K media with no FBS

• Dilutions prepared (200, 100, and 50 µg/mL) from stock 
• Growth media removed from cells and 1 mL treatment 
media added 
• Cells incubated in treatment media for 6, 24, or 72 
hours

• Media removed and centrifuged (5 min, 6000 rpm) to 
remove dust or cellular debris
• Supernatants tested for inflammatory mediators (IL-8, IL-6, 
and TNF-α)
• Time dependence seen for cytokine production
• Future testing to include bronchial epithelial cells
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Summary

• Grinding of lunar dust leads to the production of 
radicals in solution and increased dissolution of 
lunar simulant in buffers of different pH.

• Decreases in pH lead to increased leaching from 
lunar simulant

• Ground and unground lunar simulant and 
unground quartz have been shown to promote 
the production of IL-6 and IL-8, pro-inflammatory 
cytokines, by alveolar epithelial cells.  

• These results provide evidence of the need for 
further studies on these materials prior to 
returning to the lunar surface. 
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